

Retrieval of vertical T, H_2O , O_3 , and CO_2 profiles, with sensitivity analysis (SA) and uncertainty quantification (UQ)

Objectives

- Augment retrieval methods for temperature (T), H₂O, O₃, and CO₂ to enable vertical-profile estimation for CO₂, with embedded sensitivity analysis (SA) and uncertainty quantification (UQ)
 - Adapt and evolve existing algorithmic methods and tools to support sensitivity analysis (SA) and uncertainty quantification (UQ)
 - Embed in analyses of maximum-likelihood estimation (MLE) retrievals to support and improve:
 - instrument calibration,
 - · algorithm verification, and
 - data validation.
- Assess differences between retrieval approaches, e.g., "Optimal Estimation (OE)" and "Vanishing Partial Derivatives (VPD)", and map into a single unified scheme
- Characterize and quantify retrieval errors. Use results to:
 - identify dominant sensitivities to improve retrieval algorithms, and
 - assess and qualify data variances between retrievals and validation
- Explore application to vertical-profile estimations, extending to nearsurface retrievals

Approach

- Formulation of sensitivity analysis (SA) and uncertainty quantification (UQ) framework and methods
 - Adopt maximum-likelihood estimation (MLE) methods
 - Develop concepts for Monte Carlo methods, DAKOTA,* linearity tests, ...
 - Explore projection onto vertical-profile basis functions.
- Extend/adapt existing analysis tools, and develop new tools, as necessary, to support SA/UQ functionality
 - Tools that employ the Standalone AIRS Radiative-Transfer Algorithm (SARTA) for the analysis of channel selection and the calculation of retrieval Jacobians, in support of SA/UQ
 - Adapt contribution-function estimation for vertical-profile retrieval data
- Adapt observation-error analyses, based on maximum-likelihood estimation (MLE) methods
 - Link to analyses of frequency-calibration shifts.
 - Examine explicit and implicit assumptions in MLE estimations and compare "OE" and "VPD" approaches
 - Perform preliminary/idealized UQ analyses to explore and demonstrate UQ concepts and formulations.

AIRS profile-analysis tool

- **Definitions:**
 - TOA: Top of atmosphere
 - SARTA: Standalone AIRS
 Radiative-Transfer Algorithm
- Solution for n_{max} =100 vertical (lnp) layers
- In minimizing cost functions for data retrieval, iterations allow the ith input vertical profile, x_i(lnp), to be perturbed by a factor (1+α_i)
 - At present, the α_i are assumed uniform in altitude $(\ln p)$.
 - i = T, q, O_3 , and CO_2

CO₂ channel contribution functions

Radiance intensity*

Weighting function (WF)

$$I_{\nu} = S(\nu, T_{0}, \varepsilon_{\nu}) - \int_{0}^{p_{0}} B[\nu, T(p)] \frac{\partial \tau(\nu, p, ...)}{\partial p} dp$$
Surface contribution

- Contribution function (CF)
- CF plots of channels previously identified as relevant for CO₂ retrievals in the
 - stratosphere,
 - troposphere, and
 - near-surface
- Plots estimated for U.S. std. atm.
 - Real atmosphere varies with place and time (location, altitude, weather, season, composition, etc.)

AIRS weighting-/contribution-function tool

- **Definitions:**
 - **TOA:** Top of atmosphere
 - SARTA: Standalone AIRS Radiative-Transfer Algorithm
- For each channel, the tool estimates the layer profiles for the
 - weighting function (WF)
 - contribution function (CF)
- Scales all profiles using uniform $(1+\alpha_i)$ scaling factors from the **AIRS profile-analysis tool**
 - Solution for $n_{\rm max}$ =100 vertical $(\ln p)$ layers

Updated retrieval-tool capabilities (at present)

- Can ingest vertical columns of properties/constituents (T_{air} , H_2O , O_3 , CO_2 , and others) to SARTA and can compute:
 - Top-of-atmosphere (TOA) radiance for the AIRS 2378 IR channel set, including contributions from surface, troposphere, and stratosphere.
 - Weighting function (WF): layer-wise calculation of $d\tau(v, \ln p, ...)/d\ln(p)$
 - Contribution function (CF): $B[v,T(p)] d\tau(v, \ln p, ...)/d\ln(p)$, net TOA radiance,
 - per channel k,
 - per level n,
 - for a given temperature profile, $T_{air}(p)$
 - Analysis tools to support processing of multiple permutations of a single profile
 - Custom software wrappers to enable running retrieval tools for SA/UQ
- Enable perturbation of vertical constituent column inputs by fixed scale factors, $\alpha_i(p)$, simultaneously for all levels
 - Perturbation, layer-by-layer, and collation of changes in radiance, in response to changes in inputs, to support Jacobian/SA studies

Examples of CF aggregates for CO₂

AIRS Level 2 Footprint Frozen Arctic Ocean Atmospheric Profiles 1 Jan 2007; Granule 202; FP01; SC02 Lat: 74.86N Lon: 178.39W

Average Contribution Function, $B(T)x\Delta\tau/\Delta ln(p)$

Average Contribution Function, $B(T)x\Delta\tau/\Delta ln(p)$

Sufficient variance between CFs with respect to p to allow CO_2 (and other) vertical-profile estimations

Select CF aggregates with *T* profiles

AIRS Level 2 Footprint Frozen Arctic Ocean Atmospheric Profiles 1 Jan 2007; Granule 202; FP01; SC02 Lat: 74.86N Lon: 178.39W CO2 profile assumed: 381 ppm throughout

• Present algorithms/tools allow for small, but uniform, multiplicative shifts $(1+\alpha_i)$ for i^{th} profile: adequate for retrievals over narrow p ranges.

Maximum Likelihood Estimation (MLE) with UQ Simple example

TOA radiances calculation (SARTA output)

$$\theta_{v_m} = \theta_{v_m}(x_T, x_q, x_{O3}, \dots, x_{CO2}); \ x_i = x_i(n), n = 1, \dots, n_{max} = 100, \text{ is the } i^{th} \text{ variable column vector}$$

Maximize conditional probability*

$$p(x_{\text{CO2}} | \theta_{v_1}^{\text{obs}}, \theta_{v_2}^{\text{obs}}, \dots, \theta_{v_M}^{\text{obs}}; x_T^{\text{b}}, x_q^{\text{b}}, x_{\text{O3}}^{\text{b}}, x_{\text{CO2}}^{\text{b}}, \dots)$$

Minimize the cost function (varying x_{CO2} only)

$$\begin{split} J(x_{\text{CO2}}) &= \frac{1}{2} \sum_{m=1}^{M} \left[\theta_{\nu_m}^{\text{obs}} - \theta_{\nu_m} \left(x_T^{\text{b}}, x_q^{\text{b}}, x_{\text{O3}}^{\text{b}}, x_{\text{CO2}}^{\text{b}} \right) \right]^{\text{T}} R_{\nu_m \nu_m}^{-1} \left[\theta_{\nu_m}^{\text{obs}} - \theta_{\nu_m} \left(x_T^{\text{b}}, x_q^{\text{b}}, x_{\text{O3}}^{\text{b}}, x_{\text{CO2}} \right) \right] \\ &+ \frac{1}{2} \left(x_{\text{CO2}} - x_{\text{CO2}}^{\text{b}} \right)^{\text{T}} \mathbf{B}_{\text{co2}}^{-1} \left(x_{\text{CO2}} - x_{\text{CO2}}^{\text{b}} \right) \end{split}$$

Retrieved CO₂ error covariance

$$\mathbf{P}_{\text{CO2}} = (\mathbf{B}^{-1} + \mathbf{H}_{\text{CO2}}^{\text{T}} \mathbf{R}^{-1} \mathbf{H}_{\text{CO2}})^{-1}$$
$$= \mathbf{B} - \mathbf{B} \mathbf{H}_{\text{CO2}}^{\text{T}} \left(\mathbf{H}_{\text{CO2}} \mathbf{B} \mathbf{H}_{\text{CO2}}^{\text{T}} + \mathbf{R} \right)^{-1} \mathbf{H}_{\text{CO2}} \mathbf{B}$$

B: Background-error covariance

R: Observational-error covariance

 \mathbf{H}_{CO2} : Jacobian, sensitivity matrix

Maximum-Likelihood Estimate

^{*} Superscripts: "obs"=observation/measurement, "b"=background/priors

A simple illustration of retrieved CO₂ RMSE

Dependence of retrieved CO₂ RMSE on background *T* and CO₂ (priors) RMSE.

Channel brightness temperatures and their sensitivity to CO₂, and retrieved CO₂ RMSE

Jacobian/sensitivity*

$$\begin{split} H_{\text{CO2}} &= \\ [\frac{\partial \theta_{\nu_{1}} \left(x_{T}^{\text{b}}, x_{q}^{\text{b}}, x_{\text{O3}}^{\text{b}}, x_{\text{CO2}}^{\text{b}} \right)}{\partial x_{\text{CO2}}^{\text{t}}}, \\ \frac{\partial \theta_{\nu_{2}} \left(x_{T}^{\text{b}}, x_{q}^{\text{b}}, x_{\text{O3}}^{\text{b}}, x_{\text{CO2}}^{\text{b}} \right)}{\partial x_{\text{CO2}}^{\text{t}}}, \\ & \cdots, \\ \frac{\partial \theta_{\nu_{M}} \left(x_{T}^{\text{b}}, x_{q}^{\text{b}}, x_{\text{O3}}^{\text{b}}, x_{\text{CO2}}^{\text{b}} \right)}{\partial x_{\text{CO2}}^{\text{t}}}] \end{split}$$

Lower sensitivities

- **Lower retrieval RMSE**
- 2. Less-sensitive to errors in other parameters
- 3. Channel selection and retrieval algorithms

Future plans

- Further extend and generalize SARTA use
 - Support systematic, large-scale sensitivity analyses (SA)
 - Allow for p-dependent input scaling functions, $a_i(\ln p)$.
 - Explore and support Monte Carlo techniques and DAKOTA for retrieval UQ
- Perform UQ on multi-season mid-tropospheric retrievals
 - Compare with V5 retrievals
 - Explore relation and application to V6 retrievals
- Extend SA/UQ concepts and formulations and assess their applicability to the retrieval of vertical profiles for:
 - stratospheric layers,
 - low-troposphere, and
 - near-surface retrievals.
- Explore functional-projection analyses for vertical-profile estimation
- Apply to instrument calibration, enhance algorithm verification, and use available data for quantitative validation

Thank you.